Horten Ho-229 V3 captured by the United States Army, 1950 |
The British radar station |
Horten brothers: Walter (left) and Reimar (right) |
In 1943 the all-wing Horten 229 promised spectacular performance and the Luftwaffe (German Air Force) chief, Hermann Göring, allocated half-a-million Reich Marks to the brothers Reimar and Walter Horten to build and fly several prototypes. Numerous technical problems beset this unique design and the only powered example crashed after several test flights but the airplane remains one of the most unusual combat aircraft tested during World War II. Horten used Roman numerals to identify his designs and he followed the German aircraft industry practice of using 'Versuch,' literally test or experiment, numbers to describe pre-production prototypes built to test and develop a new design into a production airplane. The Horten IX design became the Horten Ho 229 aircraft program after Göring granted the project official status in 1943 and the technical office of the Reichsluftfahrtministerium assigned to it the design number 229. This is also the nomenclature used in official German documents.
The idea for the Horten IX grew first in the mind of Walter Horten when he was serving in the Luftwaffe as a fighter pilot engaged in combat in 1940 during the Battle of Britain. Horten was the technical officer for Jadgeschwader (fighter squadron) 26 stationed in France. The nature of the battle and the tactics employed by the Germans spotlighted the design deficiencies of the Messerschmitt Bf 109, Germany's most advanced fighter airplane at that time. The Luftwaffe pilots had to fly across the English Channel or the North Sea to fulfill their missions of escorting German bombers and attacking British fighters, and Horten watched his unit lose many men over hostile territory at the very limit of the airplane's combat radius. Often after just a few minutes flying in combat, the Germans frequently had to turn back to their bases or run out of fuel and this lack of endurance severely limited their effectiveness. The Messerschmitt was also vulnerable because it had just a single engine. One bullet could puncture almost any part of the cooling system and when this happened, the engine could continue to function for only a few minutes before it overheated and seized up.
Walter Horten came to believe that the Luftwaffe needed a new fighter designed with performance superior to the Supermarine Spitfire, Britain's most advanced fighter. The new airplane required sufficient range to fly to England, loiter for a useful length of time and engage in combat, and then return safely to occupied Europe. He understood that only a twin-engine aircraft could give pilots a reasonable chance of returning with substantial battle damage or even the loss of one engine.
Since 1933, and interrupted only by military service, Walter and Reimar had experimented with all-wing aircraft. With Walter's help, Reimar had used his skills as a mathematician and designer to overcome many of the limitations of this exotic configuration. Walter believed that Reimar could design an all-wing fighter with significantly better combat performance than the Spitfire. The new fighter needed a powerful, robust propulsion system to give the airplane great speed but also one that could absorb damage and continue to function.
The Nazis had begun developing rocket, pulse-jet, and jet turbine configurations by 1940 and Walter's role as squadron technical officer gave him access to information about these advanced programs. He soon concluded that if his brother could design a fighter propelled by two small and powerful engines and unencumbered by a fuselage or tail, very high performance was possible.
At the end of 1940, Walter shared his thoughts on the all-wing fighter with Reimar who fully agreed with his brother's assessment and immediately set to work on the new fighter. Fiercely independent and lacking the proper intellectual credentials, Reimar worked at some distance from the mainstream German aeronautical community. At the start of his career, he was denied access to wind tunnels due to the cost but also because of his young age and lack of education, so he tested his ideas using models and piloted aircraft. By the time the war began, Reimar actually preferred to develop his ideas by building and testing full-size aircraft. The brothers had already successfully flown more than 20 aircraft by 1941 but the new jet wing would be heavier and faster than any previous Horten design. To minimize the risk of experimenting with such an advanced aircraft, Reimar built and tested several interim designs, each one moderately faster, heavier, or more advanced in some significant way than the one before it.
The Junkers Jumo 004 jet engine |
Jumo 004C engines mounted in the internal structure of |Horten Ho229 |
In August Reimar submitted a short summary of an all-wing design that came close to achieving Göring's specifications. He issued the brothers a contract, and then demanded the new aircraft fly in 3 months. Reimar responded that the first Horten IX prototype could fly in six months and Göring accepted this schedule after revealing his desperation to get the new fighter in the air with all possible speed. Reimar believed that he had boosted the Reichsmarschall's confidence in his work after he told him that his all-wing jet bomber was based on data obtained from bone fife flight tests with piloted aircraft.
Official support had now been granted to the first all-wing Horten airplane designed specifically for military applications but the jet bomber that the Horten brothers began to design was much different from the all-wing pure fighter that Walter had envisioned nearly four years earlier as the answer to the Luftwaffe's needs for a long-range interceptor. Henceforth, the official designation for airplanes based on the Horten IX design changed to Horten Ho 229 suffixed with 'Versuch' numbers to designate the various prototypes.
All versions of the Ho 229 resembled each other in overall layout. Reimar swept each half of the
wing 32 degrees in an unbroken line from the nose to the start of each wingtip where he turned the leading edge to meet the wing trailing edge in a graceful and gradually tightening curve. There was no fuselage, no vertical or horizontal tail, and with landing gear stowed (the main landing gear was fixed but the nose wheel retracted on the first prototype Ho 229 V1), the upper and lower surface of the wing stretched smooth from wingtip to wingtip, unbroken by any control surface or other protuberance. Horten mounted elevens (control surfaces that combined the actions of elevators and ailerons ) to the trailing edge and spoilers at the wingtips for controlling pitch and roll, and he installed drag rudders next to the spoilers to help control the wing about the yaw axis. He also mounted flaps and a speed brake to help slow the wing and control its rate and angle of descent. When not in use, all control surfaces either lay concealed inside the wing or trailed from its aft edge. Parasite or form drag was virtually nonexistent. The only drag this aircraft produced was the inevitable by-product of the wing's lift.
Few aircraft before the Horten Ho229 or after it have matched the purity and simplicity of its aerodynamic form but whether this achievement would have led to a successful and practical combat aircraft remains an open question.
The structure of playwood used to build Horten Ho229 |
Wood is an unorthodox material from which to construct a jet aircraft and the Horten brothers preferred aluminum but in addition to the lack of metalworking skills among their team of crafts persons, several factors worked against using the metal to build their first jet-propelled wing. Reimar's calculations showed that he would need to convert much of the wing's interior volume into space for fuel if he hoped to come close to meeting Göring's requirement for a penetration depth of 1,000 km. Reimar must have lacked either the expertise or the special sealants to manufacture such a 'wet' wing from metal. Whatever the reason, he believed that an aluminum wing was unsuitable for this task. Another factory in Reimar's choice of wood is rather startling: he believed that he needed to keep the wing's radar cross-section as low as possible. "We wished", he said many years later, "to have the [Ho 229] plane that would not reflect [radar signals]", and Horten believed he could meet this requirement more easily with wood than metal. Many questions about this aspect of the Ho 229 design remain unanswered and no test data is available to document Horten's work in this area. The fragmentary information that is currently
available comes entirely from anecdotal accounts that have surfaced well after World War II ended.
No comments:
Post a Comment